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Abstract: - A definition of Bessel’s sequences in spaces with an indefinite metric is introduced as a generalization 

of Bessel’s sequences in Hilbert spaces. Moreover, a complete characterization of Bessel’s sequences in the 

Hilbert space associated to a space with an indefinite metric is given. The fundamental tools of Bessel’s sequences 

theory are described in the formalism of spaces with an indefinite metric. It is shown how to construct a Bessel’s 

sequences in spaces with an indefinite metric starting from a pair of Hilbert spaces, a condition is given to 

decompose a Bessel’s sequences into in spaces with an indefinite metric so that this decomposition generates a 

pair of Bessel’s sequences for the Hilbert spaces corresponding to the fundamental decomposition.  

In spaces where there was no norm, it seemed impossible to construct Bessel’s sequences. The fact that in [1] 

frame were constructed for Krein spaces motivated us to construct Bessel’s sequences for spaces of indefinite 

metric. 
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1 Introduction 
In Hilbert spaces there is a large amount of own 

results and made possible by the Bessel’s sequence, 

the construction of Riesz bases, frames and Gabor 

frames support this idea, likewise the p-Schatten  

operators study [2]. 

The Bessel's theory of the Hilbert spaces originates 

from an article by Duffin and Schaeffer [3], such 

sequence are closely linked with the frame theory 

which has a great development in [4][5][6], Recently 

the frame theory is extended to undefined metric 

spaces in [1] then has a development in [2] [7] [8], 

the Bessel’s sequences in Hilbert spaces and their 

relation to frames and Riesz bases makes it a very 

important tool for future applications. 

On the other hand, the theory of indefinite metric 

spaces which can be seen to be developed in [9][10] 

has been showing great development in its many 

applications to physics, and is promising in itself, so 

it is very novel and promising for future research to 

extend the Bessel´s sequences theory to indefinite 

metric spaces, Therefore it is natural that one would 

want to have for Bessel’s sequences the same tools 

available for the indefinite metric spaces, it is 

possible to think of having these tools for the Hilbert 

spaces generated from an indefinite metric space, 

however in this paper we develop a theory 

completely independent of such spaces and then 

relate it through some operators associated with the 

indefinite metric spaces. 
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It is possible to think of having these tools for Hilbert 

spaces generated from an indefinite metric spaces, 

however in this work we develop a completely 

independent theory of said spaces and then we relate 

it through some operators associated with indefinite 

metric spaces 

2 Preliminary                                                             

Definition 2.1:[4] Be (𝐻, ⟨·,·⟩) a Hilbert space, 

{𝑥𝑛}𝑛∈ℕ ⊂  𝐻  is a Bessel´s sequence in 𝐻, if there is 

a constant 𝐴 > 0 such that 

∑|⟨x, xn⟩|2 ≤ A ‖x‖2

𝐧∈ℕ

, for everything x ∈ H. 

Theorem 2.2:[4][5] Be (𝐻, ⟨·,·⟩) a Hilbert 

space, {𝑥𝑛}𝑛∈ℕ ⊂  𝐻, if {𝑥𝑛}𝑛∈ℕ  is a Bessel’s 

sequences in 𝐻, then there is {𝑒𝑛}𝑛∈ℕ ⊂  𝐻 

orthonormal base for 𝐻 and an operator 𝑇 ∶  𝐻 →  𝐻 

linear bounded such that 

T(en) =  xn , for everything  n ∈ ℕ .  

Definition 2.3:[9][10] Throughout this paper, 𝐾 

denotes a vector space on the complex plane ℂ. Let 

be a sesquilinear form [·,·] ∶  𝐾 ×  𝐾 →  ℂ. 

The pair (𝐾, [·,·]) is called a Krein space if  

𝐾 =  𝐾+  ⊕  𝐾−, where (𝐾+, [·,·]), (𝐾−, −[·,·]) are 

Hilbert spaces, and 𝐾+, 𝐾−  are orthogonal with 

respect to [·,·].  

Example 2.4:[9][10] Let 𝐾 = ℝ2 with undefined 

internal product [·,·]: ℝ2  × ℝ2 → ℝ given by 

[(𝑎, 𝑏), (𝑐, 𝑑)] ≔ 𝑎𝑐 − 𝑏𝑑, (𝑎, 𝑏), (𝑐, 𝑑) ∈  ℝ2. 
Consider 𝐾+ ≔ {(𝑥, 0): 𝑥 ∈  ℝ} and                        

𝐾− ≔ {(0, 𝑦): 𝑦 ∈  ℝ} clearly (𝐾+, [·,·])  and 

(𝐾−, −[·,·]) are Hilbert's spaces. For this reason 

( ℝ2 , [·,·]) is a Krein space. 

Definition 2.5:[9][10] Let  𝐾  be a Krein space with 

fundamental decomposition 𝐾 = 𝐾+ ⊕ 𝐾−, Two 

operators 𝑃+ ∶ 𝐾 → 𝐾+, 𝑃− ∶ 𝐾 → 𝐾− are defined 

as follows 𝑃+𝑘 = 𝑘+  and 𝑃−𝑘 = 𝑘−for all 𝑘 ∈  𝐾 , 

where 𝑘+∈ 𝐾+, 𝑘−∈ 𝐾− and k = 𝑘+ + 𝑘−.                   
The operators 𝑃+ and 𝑃−are known as fundamental 

projectors. 

Example 2.6:[9][10] For the Krein space ( ℝ2 , [·,·]) 

given in example 2.5 the fundamental projectors 𝑃+ 

and 𝑃−are given by 𝑃+(𝑥, 𝑦) = (𝑥, 0) and 

𝑃−(𝑥, 𝑦) = (0, 𝑦).    

Definition 2.7: [9][10]  Let (𝐾, [·,·]) be a Krein 

space, the operator 𝐽 ∶  𝐾 → 𝐾 defined by   𝐽 =  𝑃+ −
 𝑃−, i.e. for all 𝑘 ∈  𝐾 

𝐽𝑘 =   𝑃+𝑘 −  𝑃−𝑘 =  𝑘+ − 𝑘−. 

Is called the fundamental symmetry of Krein 𝐾  
space. 

Example 2.8: [9][10] For the Krein space (ℝ2 , [·,·])  

given in example 2.5 the fundamental symmetry    

𝐽 = 𝑃+ − 𝑃− is given by                                         

𝐽(𝑥, 𝑦) = (𝑥, 0) − (0, 𝑦) = (𝑥, −𝑦). 

Definition 2.9:[10][11] Let (𝐾 = 𝐾+  ⊕  𝐾−, [·,·])  

a space of Krein and 𝐽 the fundamental symmetry 

associated with the given decomposition.                   

The function [·,·]𝐽: 𝐾 × 𝐾 → ℂ is defined by 

[𝑘1, 𝑘2]𝐽 = [𝐽𝑘1, 𝑘2],  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘1, 𝑘2 ∈ 𝐾. 

This function will be called internal 𝐽 −product and 

it is [𝑘, 𝑘]𝐽  ≥  0 for all 𝑘 ∈ 𝐾. and the norm induced 

by the 𝐽 − internal product  ||𝑘||𝐽 = √[𝑘, 𝑘]𝐽 is 

called 𝐽 −norm.  Furthermore, the space (𝐾, [·,·]𝐽 ) 

turns out to be a Hilbert space.  

In this work for a Krein space (𝐾 = 𝐾+ ⊕  𝐾−, [·,·])  

we will notice ||𝑘+||+ = √[𝑘+, 𝑘+] = ||𝑘+||𝐽 and       

||𝑘−||− = √−[𝑘−, 𝑘−] = ||𝑘−||𝐽 . 

Remark 2.10: We can see that equality is fulfilled 

 ||𝑘+||+
2

+  ||𝑘−||−
2 = [𝑘+, 𝑘+] − [𝑘−, 𝑘−] 

                                                = ||𝑘||𝐽
2
. 

Example 2.11:[7][10] For the Krein space ( ℝ2 , [·
,·])  given in example 2.5 the internal 𝐽 −product is 

given by 

[(𝑎, 𝑏), (𝑐, 𝑑)]𝐽  = [𝐽(𝑎, 𝑏), (𝑐, 𝑑)] 

                               = [(𝑎, −𝑏), (𝑐, 𝑑)] 

                                             = 𝑎𝑐 − (−𝑏𝑑) = 𝑎𝑐 + 𝑏𝑑 

And the 𝐽 −norm is 
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||(𝑎, 𝑏)||𝐽 = √[(𝑎, 𝑏), (𝑎, 𝑏)]𝐽 = √𝑎2 + 𝑏2 

Proposition 2.12:[7][10] Let (𝐾 = 𝐾+  ⊕ 𝐾−, [·,·]) 

a Krein space with fundamental symmetry 𝐽, then:  

(1) 𝐽 is a symmetric operator, i.e.                      
[𝐽𝑘1, 𝑘2] = [𝑘1, 𝐽𝑘2], for all 𝑘1, 𝑘2 ∈ 𝐾..  

(2) 𝐽 is an isometric operator, i.e.                    
[𝐽𝑘1, 𝐽𝑘2] = [𝑘1, 𝑘2],  for all 𝑘1, 𝑘2 ∈ 𝐾. 

(3)     𝐽2 = 𝐼. 

(4) 𝐽 is a 𝐽 −isometric operator, i.e.            

 [𝐽𝑘1, 𝐽𝑘2]𝐽 = [𝑘1, 𝑘2]𝐽, for all 𝑘1, 𝑘2 ∈ 𝐾. 

Theorem 2.13:[7][10] Be (𝐾 = 𝐾+  ⊕  𝐾−, [·,·])    a 

Krein space, for any 𝐽 −norm in 𝐾 the inequality is 

fulfilled 

|[𝑘1, 𝑘2]| ≤ ||𝑘1||𝐽 ||𝑘2||𝐽  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘1, 𝑘2 ∈ 𝐾. 

Theorem 2.14:[9][10] Be(𝐾 = 𝐾+  ⊕  𝐾−, [·,·], 𝐽) a 

Krein space and 𝑓 ∶  𝐾 → 𝐶  a linear functional 

boundary. Then there is only one element 𝑦 ∈ 𝐾 such 

that 𝑓(𝑥)  =  [𝑥, 𝑦] for all 𝑥 ∈  𝐾. 

Definition 2.15:[1][6][8] Be (𝐾1 = 𝐾1
+  ⊕  𝐾1

−, [·
,·], 𝐽1) and (𝐾2 = 𝐾2

+  ⊕  𝐾2
−, [·,·], 𝐽2).                              

A linear operator 𝑇: 𝐾1  → 𝐾2 is said to be limited if 

there is a positive real number 𝑐 such that for 

everything 𝑘 ∈  𝐾1. 

||𝑇𝑘||𝐽2
≤ 𝑐 ||𝑘||

𝐽1
, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔 𝑘 ∈  𝐾. 

Example 2.16:[9] Let’s consider the operator 

𝑇: ℝ2 →  ℝ2 

Defined by 𝑇(𝑥, 𝑦) = (𝑦, 𝑥)  

||𝑇(𝑥, 𝑦)||
𝐽

= ||(𝑦, 𝑥)||
𝐽

= √𝑦2 + 𝑥2   

                         ≤ 𝑐 √𝑥2 + 𝑦2 =  𝑐  ||𝑘||
𝐽
. 

It is evident that for 𝑐 ≥  1 the inequality is fulfilled, 

therefore the operator 𝑇 thus defined is limited. 

Definition 2.17:[10] Be (𝐾1 = 𝐾1
+ ⊕ 𝐾1

−, [·,·]1, 𝐽1) 

and (𝐾2 = 𝐾2
+ ⊕ 𝐾2

−, [·,·]2, 𝐽2) Krein spaces.    The 

attachment of the linear operator                                        

𝑇 ∶  𝐾1  →  𝐾2 is the only linear operator 

𝑇[∗]: 𝐷𝑜𝑚(𝑇[∗] )  ⊂  𝐾2  → 𝐾1 such that for all 𝑥 ∈
 𝐾1, 𝑦 ∈  𝐷𝑜𝑚(𝑇[∗] ) 

[𝑇𝑥, 𝑦]2 = [𝑥, 𝑇[∗]𝑦]
1

. 

Proposition 2.18:[9][10] Be (𝐾 = 𝐾+ ⊕ 𝐾−, [·,·], 𝐽) 

a Krein space and 𝑇 ∶  𝐾 → 𝐾 a linear operator, then 

𝑇[∗] = 𝐽𝑇∗𝐽𝐽. 

Proposition 2.19:[3] Be (𝐾, [·,·], 𝐽) a Krein space, 

𝑇 ∶  𝐾 → 𝐾 a linear bounded operator, then 𝑇 𝐽, 𝐽𝑇 ∶
 𝐾 → 𝐾 are linear bounded operators. 

Proof. The operator 𝐽 is linear, and taking into 

account that the composition of linear operators is 

linear and the composition of dimensioned operators 

is dimensioned, then 𝑇𝐽 and 𝐽𝑇 are linear and 

dimensioned. 

Proposition 2.20:[2][9] Be (𝐾 = 𝐾+ ⊕ 𝐾−, [·,·], 𝐽) 

a Krein space, 𝑇 ∶  𝐾 → 𝐾 a linear operator such that 

𝑇𝐾+  ⊂  𝐾+, 𝑇𝐾−  ⊂  𝐾− then 𝑇𝐽 =  𝐽𝑇. 

 Proof. Be  𝑘 ∈ 𝐾, then there are  𝑘+, 𝑤+ ∈ 𝐾+ 𝑎nd 

𝑘−, 𝑤− ∈ 𝐾−such that 𝑘 = 𝑘+ + 𝑘− , 𝑇𝑘+ = 𝑤+ 

and 𝑇𝑘− = 𝑤− then 

𝑇 𝐽𝑘 = 𝑇𝐽(𝑘+ + 𝑘−) = 𝑇(𝑘+ − 𝑘−)  

                       = 𝑇𝑘+ − 𝑇𝑘− = 𝑤+ − 𝑤− 

                                  = 𝐽(𝑤+ + 𝑤−) = 𝐽(𝑇𝑘+ + 𝑇𝑘−) 

  = 𝐽𝑇(𝑘+ + 𝑘−) 

                                 = 𝐽𝑇(𝑘).               

Remark 2.1: In particular 𝑃+𝑇 = 𝑇𝑃+ and  𝑃− 𝑇 =
𝑇𝑃−. 

Definition 2.22:[9][12] Be (𝐾 = 𝐾+  ⊕  𝐾−, [·,·])   a 

Krein space with fundamental symmetry 𝐽 is said to 

{𝑒𝑛}𝑛∈ℕ ⊂ 𝐻 is orthonormal basis for (𝐾, [·,·]) if 

[𝑒𝑛, 𝑒𝑚] = {
0     𝑠𝑖 𝑛 ≠ 𝑚
±1   𝑠𝑖 𝑛 = 𝑚

 

Example 2.23:[10][12] For the Krein space ( ℝ2 , [·
,·]) given in example 2.5 an orthogonal base is given 

by {𝑒𝑛}𝑛∈ℕ = {𝑒1 = (1,0), 𝑒2 = (0,1)} as it fulfils 
[𝑒1, 𝑒1] = 1, [𝑒1, 𝑒2] = [𝑒2, 𝑒1] = 0 and      

[𝑒2, 𝑒2] = −1. 
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Definition 2.24:[9][12] Be(𝐾, [·,·]) a Krein space 

with fundamental symmetry 𝐽 says that {𝑒𝑛}𝑛∈ℕ ⊂ 𝐾 

is orthonormal basis for  (𝐾, [·,·]𝐽) if it is fulfilled. 

[𝑒𝑛, 𝑒𝑚]𝐽 = {
 0     𝑠𝑖 𝑛 ≠ 𝑚
 1    𝑠𝑖 𝑛 = 𝑚

 

Example 2.25:[10][12] For the Krein space ( ℝ2 , [·
,·])  given in example 2.5 a 𝐽 −ortonormal base is 

given by {𝑒𝑛}𝑛∈ℕ = {𝑒1 = (1,0), 𝑒2 = (0,1)} as it 

meets [𝑒1, 𝑒1]𝐽 = 1, [𝑒1, 𝑒2]𝐽 = [𝑒2, 𝑒1]𝐽 = 0 

and  [𝑒2, 𝑒2]𝐽 = 1. 

Below, we present some results obtained in this work, 

which allowed us to introduce the Bessel’s sequences 

in spaces of indefinite metric. 

3 successions of J-Bessel   in spaces with 

indefinite metric 

Proposition 3.1 Be (𝐾 = 𝐾+  ⊕  𝐾−, [·,·]) a Krein 

space with fundamental symmetry 𝐽, if {𝑒𝑛 = 𝑒𝑛
+ +

𝑒𝑛
−}𝑛∈ℕ ⊂  𝐾 generate to (𝐾, [·,·]), if only if  

{𝑒𝑛
+}𝑛∈ℕ ⊂ 𝐾+,  {𝑒𝑛

−}𝑛∈ℕ ⊂ 𝐾− generate to         
(𝐾+, [·,·]) 𝑎𝑛𝑑  (𝐾−, −[·,·]) respectively. 

 Proof. Sea  𝑘+ ∈ 𝐾+ then exists ∝𝑛 ∈  ℂ  such that 

 𝑘+ = ∑ ∝𝑛 𝑒𝑛

𝑛∈ℕ

 

then 

 𝑘+ = 𝑃+𝑘+ = 𝑃+ ∑ ∝𝑛 𝑒𝑛

𝑛∈ℕ

 

               = ∑ ∝𝑛 𝑃+𝑒𝑛

𝑛∈ℕ

= ∑ ∝𝑛 𝑒𝑛
+

𝑛∈ℕ

 

Similarly it is shown that  {𝑒𝑛
−}𝑛∈ℕ generate to 

(𝐾−, −[·,·]).  Now {𝑒𝑛
+}𝑛∈ℕ ⊂ 𝐾+, {𝑒𝑛

−}𝑛∈ℕ ⊂ 𝐾− 

generate to (𝐾+, [·,·]) 𝑎𝑛𝑑  (𝐾−, −[·,·]) respectively. 

then exists ∝𝑖 , 𝛽𝑖 ∈  ℂ  and 𝑘 = 𝑘+ + 𝑘 − such that 

𝑘 = 𝑘+ + 𝑘 − = ∑ ∝𝑛 𝑒𝑛
+

𝑛∈ℕ

+ ∑ 𝛽𝑛 𝑒𝑛
−

𝑛∈ℕ

 

Proposition 3.2: {𝑒𝑛
+}𝑛∈ℕ ⊂ 𝐾+,  {𝑒𝑛

−}𝑛∈ℕ ⊂ 𝐾− 

generators for 𝐾+ and 𝐾−, We can get {𝑒𝑛
∗+}𝑛∈ℕ , 

{𝑒𝑛
∗−}𝑛∈ℕ , orthonormal bases for 𝐾+ and  𝐾− hence 

a basis for 𝐾. Similarly from {𝑒𝑛 = 𝑒𝑛
+ + 𝑒𝑛

−}𝑛∈ℕ 

generator for 𝐾 orthonormal bases are obtained for 
(𝐾+, [·,·])  and  (𝐾−, −[·,·]). 

Proposition 3.3: Let (𝐾 = 𝐾+  ⊕  𝐾−, [·,·]) a Krein 

space with fundamental symmetry 𝐽, 
{𝑘𝑛

+ }𝑛∈ℕ, {𝑘𝑛
− }𝑛∈ℕ orthonormal bases for Hilbert 

spaces (𝐾+, [·,·])  and (𝐾−, −[·,·]) respectively, then 

{
√2

2
 (𝑘𝑛

+ + 𝑘𝑛
−)}𝑛∈ℕ  is an orthonormal basis for the 

space of Hilbert (𝐾, [·,·]𝐽) 

 Proof.   

[
√2

2
 (𝑘𝑛

+ + 𝑘𝑛
−),

√2

2
 (𝑘𝑚

+ + 𝑘𝑚
− )]𝐽 

                   = [
√2

2
 (𝑘𝑛

+ − 𝑘𝑛
−),

√2

2
 (𝑘𝑚

+ + 𝑘𝑚
− )] 

           = [ 
√2

2
𝑘𝑛

+,
√2

2
𝑘𝑚

+ ] −  [ 
√2

2
𝑘𝑛

−,
√2

2
𝑘𝑚

−  ] 

            =
1

2
[ 𝑘𝑛

+, 𝑘𝑚
+ ] − 

1

2
[ 𝑘𝑛

−, 𝑘𝑚
−  ] = δ𝑛𝑚. 

Then  {
√2

2
 (𝑘𝑛

+ + 𝑘𝑛
−)}𝑛∈ℕ  is an orthonormal base 

for Hilbert's space (𝐾, [·,·]𝐽). 

Proposition 3.4: Be (𝐾, [·,·])  a Krein space with 

fundamental decomposition 𝐾 = 𝐾+  ⊕ 𝐾− and be 

𝐽 the associated fundamental symmetry, 𝑇+: 𝐾+ →
𝐾+, 𝑇− ∶ 𝐾− →  𝐾− dimensioned linear operators, 

then the operator 𝑇 ∶  𝐾 →  𝐾 defined by 

𝑇(𝑘) = 𝑇(𝑘+ + 𝑘 −) = 𝑇+𝑘+ + 𝑇−𝑘−  

For each 𝑘 ∈  𝐾, is linearly dimensioned in 

Hilbert's space (𝐾, [·,·]𝐽). 

Proof. 

Be 𝑘1, 𝑘2 ∈  (𝐾, [·,·]𝐽) and α ∈ ℂ, then 

T (α𝑘1 +  𝑘2) = T (α𝑘1
+ + 𝛼𝑘1

−+ 𝑘2
+ + 𝑘2

−)  

             = T ((α𝑘1
++ 𝑘2

+) + (𝛼𝑘1
− + 𝑘2

−)) 

             = 𝑇+ (α𝑘1
++ 𝑘2

+) + 𝑇−(𝛼𝑘1
− + 𝑘2

−) 

= 𝛼𝑇+𝑘1
++ 𝑇+𝑘2

+ + 𝛼𝑇−𝑘1
− + 𝑇−𝑘2

− 

 = 𝛼𝑇+𝑘1
++ 𝛼𝑇−𝑘1

− + 𝑇+𝑘2
+ + 𝑇−𝑘2

− 

              = 𝛼𝑇(𝑘1
++ 𝑘1

−) + 𝑇(𝑘2
+ + 𝑘2

−)                                 

              = 𝛼𝑇(𝑘1) + 𝑇(𝑘2). 
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Thus 𝑇 is lineal. 

Be 𝑘 =  𝑘+ + 𝑘− ∈ 𝐾 hipotecally   𝑇 + and  𝑇 − are 

limited, so there are real positives  𝑐1,  𝑐2 such that   

||𝑇+𝑘+||+ ≤ 𝑐1||𝑘+||
+

 , ||𝑇−𝑘−||− ≤ 𝑐1||𝑘−||−   

be    √ 𝑀𝑎𝑥{2𝑐1
2, 2𝑐2

2} = 𝑐. 

Then  

||𝑇𝑘||𝐽
2 = ||𝑇(𝑘+ + 𝑘−)||𝐽

2 = ||𝑇+𝑘+ + 𝑇−𝑘−||𝐽
2 

          ≤ ( ||𝑇+𝑘+||
𝐽

+ ||𝑇−𝑘−||
𝐽
 )2 

        ≤ 2||𝑇+𝑘+||𝐽
2 + 2||𝑇−𝑘−||𝐽

2 

             ≤ 2𝑐1
2||𝑘+||𝐽

2
+  2𝑐2

2||𝑘−||𝐽
2
 

             = 2𝑐1
2||𝑘+||+

2
+  2𝑐2

2||𝑘−||−
2
 

          ≤ 𝑀𝑎𝑥{2𝑐1
2, 2𝑐2

2} ( ||𝑘+||+
2

+ ||𝑘−||−
2 ) 

   ≤ 𝑐2 ( ||𝑘||𝐽
2 ) 

Whereby  ||𝑇𝑘||𝐽 ≤ 𝑐 ||𝑘||𝐽  

The following result obtained in this work, motivated 

us to extend the theory of Bessel’s sequences for 

Hilbert spaces to indefinite metric spaces. 

Theorem 3.5: Be (𝐾, [·,·])  a Krein space with 

fundamental decomposition 𝐾 = 𝐾+ ⊕  𝐾− and let 𝐽 

be the associated fundamental symmetry if 

{𝑘𝑛
+}𝑛∈ℕ  ⊂ 𝐾+, {𝑘𝑛

−}𝑛∈ℕ  ⊂ 𝐾−  are Bessel's 

sequences to (𝐾+, [·,·]) and (𝐾−, −[·,·]) respectively, 

then {
√2

2
 (𝑘𝑛

+ + 𝑘𝑛
−)}𝑛∈ℕ it's a Bessel´s sequence for 

Hilbert's space (𝐾, [·,·]𝐽). 

 Proof. There are 𝑇+: 𝐾+ → 𝐾+, 𝑇− ∶ 𝐾− →  𝐾− 

dimensioned linear operators {𝑡𝑛
+}𝑛∈ℕ ⊂ 𝐾+, 

{𝑘𝑛
−}𝑛∈ℕ ⊂ 𝐾− orthonormal bases for (𝐾+, [·,·]) and 

(𝐾−, −[·,·]) respectively, such that       𝑇+𝑡𝑛
+ = 𝑘𝑛

+  
and  𝑇−𝑡𝑛

− = 𝑘𝑛
− for each 𝑛 ∈ ℕ.  

Let’s define the operator 𝑇 ∶  𝐾 →  𝐾 as 

𝑇(𝑘) = 𝑇(𝑘+ + 𝑘 −) = 𝑇+𝑘+ + 𝑇−𝑘−  

For each 𝑘 ∈ 𝐾,  the proposition 3.3 guarantees that 

𝑇 is linear and the proposition 3.2 guarantees that  

{
√2

2
 (𝑡𝑛

+ + 𝑡𝑛
−)}𝑛∈ℕ ⊂ 𝐾. 

is an orthonormal base for Hilbert's space (𝐾, [·,·]𝐽).  

In addition 

𝑇 (
√2

2
 (𝑡𝑛

+ + 𝑡𝑛
−)) =

√2

2
  𝑇( 𝑡𝑛

+ + 𝑡𝑛
−)  

                                             =
√2

2
𝑇+𝑡𝑛

+ +
√2

2
𝑇−𝑡𝑛

− 

                                =
√2

2
𝑘𝑛

+ +
√2

2
𝑘𝑛

− 

                             =
√2

2
(𝑘𝑛

+ + 𝑘𝑛
−). 

The theorem 2.2 guarantees that   {
√2

2
(𝑘𝑛

+ + 𝑘𝑛
−)}𝑛∈ℕ 

it's a Bessel’s sequence for Hilbert's space (𝐾, [·,·]𝐽). 

Definition 3.6: Be (𝐾 = 𝐾+  ⊕ 𝐾−, [·,·]) a Krein 

space with fundamental symmetry 𝐽, {𝑘𝑛}𝑛∈ℕ  ⊂  𝐾,  
we say that {𝑘𝑛}𝑛∈ℕ is a 𝐽 −Bessel’s sequence in 𝐾 

if there is  {𝑒𝑛}𝑛∈ℕ ⊂  𝐾 orthonormal base for (𝐾, [·,·
]) and a operator for 𝑇 ∶ 𝐾 → 𝐾 linear dimensioned, 

such that 

𝑇(𝐽𝑒𝑛) =  𝐽𝑘𝑛, ; 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑛 ∈  ℕ. 

Remark 3.7: In the particular case of 𝐾 being a 

Hilbert space, 𝐽 = 𝐼 and it would have 

𝑇(𝑒𝑛) =  𝑘𝑛 ; 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔   𝑛 ∈  ℕ. 

Which is the result given in theorem 2.2 which is 

equivalent to definition 2.1. 

Example 3.8: Let’s consider the Krein space 

( ℝ2, [·,·] ) with fundamental symmetry 𝐽 given in the 

example 2.5 the orthonormal base                     

{𝑒𝑛}𝑛∈ℕ = {𝑒1 = (1,0), 𝑒2 = (0,1)}, the lineal 

operator   

𝑇: ℝ2 →  ℝ2 

Defined by 𝑇(𝑥, 𝑦) = (𝑦, 𝑥). The example 2.17 

guarantees that 𝑇 is bounded and                         

{𝑘𝑛}𝑛∈ℕ = { 𝑏1 = (−1,0), 𝑏2 = (0, −1) },  

In addition 

𝑇𝐽𝑒1 = 𝑇𝐽(0,1) = 𝑇(0, −1) = (−1,0) 
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                        = 𝐽(−1,0) = 𝐽(𝑏1) 

        𝑇𝐽𝑒2 = 𝑇𝐽(1,0) = 𝑇(1, −0) = (0,1) 

                        = 𝐽(0, −1) = 𝐽(𝑏2) 

Then  {𝑘𝑛}𝑛∈ℕ = { 𝑏1 = (−1,0), 𝑏2 = (0, −1) }   is 

a J-Bessel’s sequence to the Krein space ( ℝ2, [·,·] ). 

Proposition 3.9: Be (𝐾 = 𝐾+  ⊕ 𝐾−, [·,·])   a Krein 

space with fundamental symmetry 𝐽, if {𝑘𝑛 = 𝑘𝑛
+ +

𝑘𝑛
−}𝑛∈ℕ ⊂  𝐾 is a J-Bessel’s sequences for (𝐾, [·,·]) 

and the operator associated with the Bessel sequences 

leaves 𝐾+ and 𝐾− then {𝑘𝑛
+}𝑛∈ℕ, {𝑘𝑛

−}𝑛∈ℕ are 

Bessel's sequences to (𝐾+, [·,·]) and (𝐾−, −[·,·]) 

respectivelly. 

 Proof. If  {𝑘𝑛 = 𝑘𝑛
+ + 𝑘𝑛

−}𝑛∈ℕ ⊂  𝐾  is a J-Bessel’s 

sequence for (𝐾, [·,·]) then there are {𝑒𝑛}𝑛∈ℕ 

ortonormal base for (𝐾, [·,·]), one linear 𝑇 operator 

and  𝑇𝐾+ ⊂ 𝐾+, 𝑇𝐾− ⊂ 𝐾− and it complies  

𝑇(𝐽𝑒𝑛) =  𝐽𝑘𝑛, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔 𝑛 ∈  ℕ. 

Then  

𝑇(𝑒𝑛
+) = 𝑇(𝐽𝑒𝑛

+) =  𝑇𝐽(𝑃+(𝑒𝑛
+ + 𝑒𝑛

−)) 

       =  𝑇𝐽(𝑃+(𝑒𝑛)) = 𝑇𝑃+(𝐽𝑒𝑛) 

       = 𝑃+𝑇(𝐽𝑒𝑛) = 𝑃+𝐽𝑘𝑛 = 𝑘𝑛
+ 

The proposition 3.1 guarantees that {𝑒𝑛
+}𝑛∈ℕ is an 

orthonormal base for Hilbert's space (𝐾+, [·,·]).  

so {𝑘𝑛
+}𝑛∈ℕ it's a Bessel´s sequence for Hilbert's 

space (𝐾+, [·,·]).   

Similarly, it is shown that {𝑘𝑛
−}𝑛∈ℕ it's a Bessel’s 

sequences for Hilbert  space (𝐾−, −[·,·]).   

The following result shows the consistency of the 

definition 3.5 of  𝐽 −Bessel´s sequence given in this 

paper in that it does not depend on fundamental 

decomposition  

 Theorem 3.10: Be (𝐾, [·,·]) a Krein space with 

fundamental decomposition given by 𝐾 = 𝐾1
+  ⊕

 𝐾1
− , 𝐽1 the associated fundamental symmetry and 

{𝑘𝑛}𝑛∈ℕ  a J-Bessel’s sequence to (𝐾, [·,·])  with 

regard to  𝐽1. if  𝐽2 is the fundamental symmetry 

associated with decomposition  𝐾 = 𝐾2
+  ⊕ 𝐾2

− , 

then {𝑘𝑛}𝑛∈ℕ is also a J-Bessel’s sequence for  (𝐾, [·
,·]) with regard to 𝐽2.     

 Proof. be  𝑇  the dimensioned linear operator that 

converts {𝑘𝑛}𝑛∈ℕ  ⊂  𝐾 in a J-Bessel´s sequence to 

(𝐾, [·,·]) with regard to the fundamental simmetry  𝐽1 

associated with decomposition 𝐾 = 𝐾1
+  ⊕  𝐾1

−. 

Then there is {𝑒𝑛}𝑛∈ℕ Krein space orthonormal base          
(𝐾, [·,·]) and it complies that 𝑇 𝐽1𝑒𝑛 =  𝐽1𝑘𝑛. Now if 

𝐽2 is the fundamental symmetry associated with 

decomposition 𝐾 = 𝐾2
+  ⊕ 𝐾2

− and  𝜙 ∶ 𝐾 →  𝐾 is 

the operator defined by 

𝜙 := 𝐽2𝐽1T 𝐽1𝐽2 

then 𝜙 is also linear bounded. Finally it is shown that 

𝜙 makes {𝑘𝑛}𝑛∈ℕ  ⊂  𝐾 a J-Bessel´s sequence with 

respect to the fundamental symmetry 𝐽2. Indeed, if we 

consider the orthonormal base {𝑒𝑛}𝑛∈ℕ it results that 

𝜙(𝐽2𝑒𝑛) = (𝐽2𝐽1T 𝐽1𝐽2)( 𝐽2𝑒𝑛)  

             = 𝐽2𝐽1T 𝐽1𝐽2
2𝑒𝑛 = 𝐽2𝐽1(T 𝐽1𝑒𝑛)  

             = 𝐽2𝐽1𝐽1𝑘𝑛 =𝐽2𝐽1
2 𝑘𝑛               

             = 𝐽2𝑘𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙   𝑛 ∈  ℕ. 

Therefore in definition 3.5 one can simply talk about 

J-Bessel's sequence for the Krein space (𝐾, [·,·]).     

The following result guarantees us that if a Krein 

space has a J-Bessel´s sequence, it shares it with its 

associated Hilbert space. 

Proposition 3.11: Be  (𝐾 = 𝐾+  ⊕ 𝐾−, [·,·]) a 

Krein space with fundamental symmetry 𝐽. If  

{𝑘𝑛}𝑛∈ℕ is a J-Bessel’s sequence to (𝐾, [·,·]), then 

{𝑘𝑛}𝑛∈ℕ it's a Bessel’s sequence for Hilbert's space 

 (𝐾, [·,·]𝐽). 

Proof. Let’s suppose that {𝑘𝑛}𝑛∈ℕ is a J-Bessel’s 

sequence for (𝐾, [·,·]), then it exists {𝑒𝑛}𝑛∈ℕ  ⊆  𝐾 

orthonormal base and an operator 𝑇 ∶  𝐾 →  𝐾 linear 

dimensioned with respect to the 𝐽 − norm such that 

𝑇(𝐽𝑒𝑛) =  𝐽𝑘𝑛 for all 𝑛 ∈ ℕ. The proposition 3.2 

guarantees that  {
√2

2
𝐽𝑒𝑛} 𝑛∈ℕ is 𝐽 −orthonormal base 

for (𝐾, [·,·]).  Let’s consider the operator 𝜙 ∶  𝐾 →  𝐾 

defined by 𝜙(𝑘): = √ 2 𝐽𝑇(𝑘), for all 𝑘 ∈  𝐾. 

The proposition 2.20 guarantees that 𝜙 is linear in 

size and is such that 
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       𝜙( 
√2

2
𝐽𝑒𝑛)  =  √ 2 𝐽𝑇 ( 

√2

2
𝐽𝑒𝑛)                 

=  (√ 2)(
√2

2
)𝐽𝑇(𝐽𝑒𝑛)  =  𝐽𝑇(𝐽𝑒𝑛)  

=  𝐽(𝐽𝑘𝑛)  =  𝑘𝑛. 

Henceforth  {𝑘𝑛}𝑛∈ℕ is a Bessel´s sequence in 

(𝐾, [·,·]𝐽). 

Remark 3.12: Note that in particular if  {𝐽𝑘𝑛}𝑛∈ℕ a 

Bessel´s sequence to (𝐾, [·,·]) , then  {𝐽𝑘𝑛}𝑛∈ℕ it's a 

Bessel´s sequence for Hilbert's space (𝐾, [·,·]𝐽).  

In the following result we show that fundamental 

symmetry preserves Bessel's sequence in spaces of 

indefinite metric         

Proposition 3.13: Be (𝐾 = 𝐾+  ⊕ 𝐾−, [·,·]) a Krein 

space with fundamental symmetry 𝐽. If {𝑘𝑛}𝑛∈ℕ is a 

Bessel´s sequence for Hilbert space (𝐾, [·,·]𝐽) then 

{𝐽𝑘𝑛}𝑛∈ℕ  it's a Bessel´s sequence for Hilbert's space 

 (𝐾, [·,·]𝐽). 

Proof. Let’s suppose that {𝑘𝑛}𝑛∈ℕ ⊂ 𝐾 its a Bessel´s 

sequence for Hilbert's space (𝐾, [·,·]𝐽), then there is 

{𝑒𝑛}𝑛∈ℕ ⊂ 𝐾 base 𝐽 −orthonormal in 𝐾 and an 

operator 𝑇 ∶  𝐾 →  𝐾 linear dimensioned with 

respect to the 𝐽-norm such that  𝑇(𝑒𝑛) = 𝑘𝑛,
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ. 

Let’s consider the operator 𝛤 ∶  𝐾 →  𝐾 defined 

by 𝛤(𝑘)  =  𝐽𝑇(𝑘) , the proposition 2.20 guarantees 

that 𝐽𝑇 is linear with respect to the 𝐽-norm, also 

𝛤(𝑒𝑛) =  𝐽𝑇(𝑒𝑛) =  𝐽(𝑇(𝑒𝑛))           

  =  𝐽𝑘𝑛 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ. 

This leads to the conclusion that {𝐽𝑘𝑛}𝑛∈ℕ  it's a 

Bessel’s sequence for Hilbert's space (𝐾, [·,·]𝐽). 

In the following result, we show how to build new 𝐽-

Bessel’s sequence in Krein spaces through a limited 

operator 

Proposition 3.14: If  (𝐾, [·,·]) is a Krein space with 

fundamental symmetry 𝐽, {𝑘𝑛}𝑛∈ℕ is a J-Bessel’s 

sequence in 𝐾 and 𝑈 ∶  𝐾 →  𝐾 is a limited linear 

operator, then {𝑈(𝐽𝑘𝑛)}𝑛∈ℕ is a Bessel’s sequence 

for (𝐾, [·,·]) . 

 Proof. There is an operator 𝑇 ∶  𝐾 →  𝐾 linear 

dimensioning and an orthogonal base  {𝑒𝑛}𝑛∈ℕ for 𝐾 

such that 𝑇(𝐽𝑒𝑛) =  𝐽𝑘𝑛 for all n ∈ N, let’s consider 

the operator  𝐽𝑈𝑇 ∶  𝐾 →  𝐾which is linearly 

dimensioned, in addition                                           

 𝐽𝑈𝑇(𝐽𝑒𝑛) = 𝐽𝑈(𝐽𝑘𝑛) =  𝐽(𝑈(𝐽𝑘𝑛)), for all 𝑛 ∈ ℕ.  
Therefore it is clear that {𝑈(𝐽𝑘𝑛)}𝑛∈ℕ is a Bessel’s 

sequence for (𝐾, [·,·]). 

Next, we prove that definition 2.1 usually given in 

Hilbert spaces for Bessel´s sequence is a 

consequence of definition 3.5 given in this article. 

Theorem 3.15: Be (𝐾, [·,·]) a Krein space with 

fundamental symmetry 𝐽, if {𝑘𝑛}𝑛∈ℕ is a J-Bessel’s 

sequence for (𝐾, [·,·]) and the operator associated 

with the Bessel’s sequence leaves 𝐾+ and 𝐾−, then 

there is a constant 𝐴 >  0 such that 

∑|[𝑘, 𝑘𝑛]|2 ≤ 𝐴 ‖𝑘‖𝐽
2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝐾.

𝑛∈ℕ

 

Proof. As {𝑘𝑛}𝑛∈ℕ is a J-Bessel’s sequence for 
(𝐾, [·,·]) by proposition 3.8 {𝑘𝑛

+}𝑛∈ℕ ⊂ 𝐾+, 

{𝑘𝑛
−}𝑛∈ℕ ⊂ 𝐾−are Bessel′s sequence to(𝐾+, [·

,·]) and (𝐾−, −[·,·]) respectively, then theorem 3.4 

guarantees us that {
√2

2
(𝑘𝑛

+ + 𝑘𝑛
−)}𝑛∈ℕ it's a Bessel’s 

sequence for Hilbert's space (𝐾, [·,·]𝐽)                           

furthermore proposition 3.12 guarantees  that 

{
√2

2
𝐽(𝑘𝑛

+ + 𝑘𝑛
−)}𝑛∈ℕ it's a Bessel’s sequence for 

Hilbert's space  (𝐾, [·,·]𝐽) Bessel's definition 2.1 of 

sequence for Hilbert spaces ensures that there is  

𝐴1 > 0 such that  

∑ |[𝑘,
√2

2
𝐽𝑘𝑛]𝐽|2 ≤

𝑛∈ℕ

𝐴1 ‖𝑘‖𝐽
2 

For all 𝑘 ∈ 𝐾.  

Then  

∑ |[𝑘, 𝑘𝑛]|2

𝑛∈ℕ

≤ √2 𝐴1 ‖𝑘‖𝐽
2 

Taking √2 𝐴1 = 𝐴  it has that 

∑ |[𝑘, 𝑘𝑛]|2

𝑛∈ℕ

≤ 𝐴 ‖𝑘‖𝐽
2 

For all 𝑘 ∈ 𝐾.                                  
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4 Conclusions 
In this article, we have introduced the concept of 

Bessel’s sequences in spaces of indefinite metric, 

starting from the construction of Bessel´s sequences 

for Hilbert spaces associated with a space of 

indefinite metric. It is also shown how to construct 

Bessel’s sequences for a Krein space from its 

fundamental decomposition and that these do not 

depend on the decomposition of the Krein space. The 

definition set out in this investigation allows us to 

construct Bessel’s sequences starting from the 

orthonormal basis. In addition, it is shown that the 

definition presented in Hilbert spaces is a 

consequence of the definition given in this work and 

how fundamental symmetry preserves the Bessel’s 

sequences in Krein spaces and associated Hilbert 

spaces. Based on the relationship that the Bessel’s 

sequences have with the frames in Hilbert spaces and 

taking into account that the frame were extended to 

undefined metric spaces in [1] and that also recent 

developments in the theory of frames and wavelet 

[13] [14] show us the solidity of this theory in fields 

applied to systems and signal processing, this work 

turns out to be promising to find new applications in 

more general spaces than that developed in [13] [14]. 
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